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Concrete degradation
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Multi-ionic model
The transport of ions in STADIUM® is modeled with
the extended Nernst-Planck equation with an 
advection term:

Mass conservation equation:

Flux of ions (1D):

Variables:
• Concentrations ci
• Diffusion potential ψ
• Water content w
• Temperature T

diffusion electrical
coupling

chemical
activity advection



Multi-ionic model
To complete the system of equations, the following
relationships are considered:

The system of equations is solved using the
finite element method:

• 11 unknowns: 8 x ci +  w + ψ + T
• 11 equations: 8 conservation + Poisson + Richards + Heat

Poisson:

Richards:

Heat conduction:



Multi-ionic model
The chemical reactions are modeled according to
dissolution/precipitation equilibrium relationships:

In the case of chlorides, the formation of Friedel’s
salts is modeled according to an ionic exchange relationship:

• Friedel’s salts formation: 

• Relationship:

Dissolution/precipitation:

Portlandite:



Operator-splitting algorithm
(Isothermal case - SNIA)

Input parameters

Transport equations

Chemical module

Output
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• Material parameters
- Transport properties
- Cement composition

• Exposure conditions

• 10 variables : 8 x ci +  w + ψ
• 10 equations : 8 mass conservation   

equations + Richards + Poisson

• 9 solid phases
• 9 equilibrium relationships

• 10 variables : 8 x ci +  w + ψ
• 9 solid phase profiles



To bring the solution back to equilibrium at one node, 
the following non-linear system of equations is solved:

KCH = γCa γOH
2 (Ca° + XCH + 6XAft + XGyp + ...) (OH° + 2XCH + 4XAft + ...)2

KGyp = γCa γSO4 (Ca° + XCH + 6XAft + XGyp + ...) (SO4° + 3XAft + XGyp + ...)

Xi = amount of solid i dissolved or formed
C° = concentration before equilibrium

Numerical method: Newton-Raphson

Multi-ionic model
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Input parameters
In order to run the model, one needs to generate
information on the following properties:

• Mixture characteristics
• Binder composition
• Porosity
• Pore solution
• Diffusion coefficients (formation factor)
• Water diffusivity

The other parameters are either physical constants or
properties that have a relatively weak influence on the output:

•F, R, zi, …
•Thermal properties: k, C



Cement chemistry



Experimental procedure:
Evaluation of the diffusion
coefficients for all ionic
species:

•OH
•Na
•K
•SO4 …

Diffusion coefficients



Samson et al. (2003) Materials and Structures, (36) 156

Diffusion coefficients
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Water diffusivity
 

Axi-symetrical 
isolation 
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Exposure conditions



Experimental validation
Thin C3S slices

25-L Reservoir



Degradation analyses
Sound C3S paste Leached C3S paste

Validation - Leaching

Initial Porosity = 50%    τ = 35.2 



The C-S-H decalcification modeling is based on
Berner’s approach (1992):

Modeling - Leaching
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Validation - Leaching
Thin C3S slices (w/c: 0.5) – Pure water 

Calcium profiles

2 days

7 days

4 days



Validation - Leaching
Thin C3S slices (w/c: 0.5) – Pure water 

Silicon profiles

2 days

7 days

4 days



Thin C3S slices (w/c: 0.5) - Calcium profiles

3 days

11 days

7 days

Validation – Leaching (pH = 12)



Validation - Leaching



Validation - Leaching
The model has been validated for several degradation cases.

• Pure water exposure:
Paste (w/c:0.6, Type 10)
exposed to deionized
water for 3 months –

Calcium profile
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Validation – Sulfate attack

Neat Cement Paste
(w/c: 0.6, ASTM Type I cement, Na2SO4 = 50 mmol/L)

Calcium profiles

6 months 12 months



Validation – Sulfate attack
The model has been validated for several degradation cases.

• Sodium sulfate exposure:

Paste (w/c: 0.6, Type 10)
exposed to Na2SO4
(50 mmol/L) for 12 
months –

Sulfur profile



Validation – Chloride attack
The approach has been validated for several degradation cases.

• Sodium chloride exposure: 

0.45 CSA Type 10 (ASTM Type I) concrete



U.S. Embassy (Abu Dhabi)

130 Liberty St. (WTC New York)

Parking structure (Louisville, KY)



Questions?



Multi-ionic model



Transport properties

Modeling the effect of temperature on diffusion
coefficients:

Di = Di
ref exp [ α (T – Tref) ]

Evaluation of α:



Transport properties

Modeling the effect of temperature on diffusion
coefficients:

Di = Di
ref exp [ α (T – Tref) ]

The value of α:

•does not depend on the w/c,
•does not depend on the type of cement,
•does not depend on hydration.

The parameter α characterizes the effect of temperature
on diffusion.

The global analysis of the results gives: α = 0.028.



Heat transfer

The following heat conduction equation is implemented in the 1D 
version of the model:

where the conductivity k depends on temperature T
and the degree of saturation S *:

£ Kim et al., Cement and Concrete Research 30 (2003) 363-371



Transport equations

Without the constant temperature assumption, the
following term is added to the flux relationship:

•Special care must be taken when ci=0 because of the
ln term. Evaluating the limit shows that the term 
tends to 0 in that case.
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Chemical reactions

The effect of temperature on chemical reactions is modeled
according to the Van’t Hoff relationship.

It relates the equilibrium constant of the solid phases
considered in STADIUM® with temperature.

• To and Ko are reference values at 25°C.
• ΔHo is the reaction enthalpy.



Diffusion coefficients

Hydration function:
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Diffusion coefficients
Impact of moisture content

Millington and Quirk, 
Trans. Faraday Soc., vol. 57 (1961)



Diffusion coefficients
Impact of degradation

Sound
zoneCalcium-leached zone

T10-6M-S


